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Abstract 

Kinematic models are indispensable for the trajectory planning and the control of 

autonomous bicycles. The conventional approaches for kinematic models of bicycles 

mainly depend on the geometrical intuition. The kinematic modeling approach developed 

in this study is based on the systematic differential motion transformation; thus, it is 

helpful to understand the bicycle motion at each coordinate system and is applicable to 

the controller design for various types of bicycles. The differential motion transformation 

represents the Jacobian relationship between two coordinate frames, which is the velocity 

kinematics of a bicycle. Computer simulations are conducted to verify the kinematic 

model and the tracking control for autonomous bicycles in this study. 

 

Keywords: autonomous bicycle, differential motion transformation, Jacobian, velocity 

kinematic model, inverse kinematic control 

 

1. Introduction 

The autonomous bicycle has drawn increasing attention as an educational and 

experimental test bed for the control theory [1-2]. There exists many studies about 

autonomous bicycles focused on the methods of dynamic modeling and the control [3-4]. 

For motion planning of the autonomous bicycle, a kinematic model is also indispensable 

because it provides a basis for a tracking controller design to achieve a given desired 

trajectory. However, the existing kinematic modeling methods mainly rely on the 

geometric intuition [1,5], it is difficult to apply these methods to many types of bicycles 

with various structures [6]. 

Muir et al. developed a kinematic modeling method for general wheeled mobile robots 

by using a coordinate transformation matrix [7]. For a kind of bicycles, Klein presented 

the velocity kinematic model based on the geometrical analysis [1]. Similar kinematic 

models were used to design tracking controllers for autonomous bicycles [8-10]. Ham et 

al. proposed an iterative algorithm for the inverse kinematic problem of autonomous 

bicycles based on the geometrical kinematic model [5]. Tanaka et al. addressed steering 

control to follow a given trajectory for a bicycle [11]; Meng et al. proposed a variable 

structure bicycle and a kinematic model based on the geometry of the structure [12]. 

To understand the motion behavior of bicycles, a systematic method of kinematic 

modeling is required, rather than a heuristic geometrical method. With this motivation, 

this study aims to develop a new method of kinematic modeling for autonomous bicycles 

by using the differential motion transformation. Because the theory of the differential 

motion transformation has been thoroughly developed [13], it is useful for the 

systematical modeling of the bicycle kinematics and is applicable to many types of 

bicycles with various structures. 

The differential motion represents the translation and rotation with respect to each axis 

in a coordinate system over a small time interval. Therefore, the transformation of 

differential motion represents a Jacobian relationship between the coordinate systems. 
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This relationship is used in this study to convert the speed of the driving wheel into the 

velocity of a bicycle: the velocity kinematics of a bicycle. The velocity kinematics can be 

used inversely to determine the required driving speed of a wheel and the steering angle 

from the desired trajectory of a bicycle for tracking control. This paper is organized as 

follows: a brief introduction to the general theory of the differential motion 

transformation is provided in Section 2. The velocity kinematic model for a bicycle is 

derived based on the differential motion transformation in Section 3. In Section 4, the 

kinematic model is verified by computer simulation for tracking control associated with 

the inverse kinematics and concluding remarks are presented in Section 5. 

 

2. Differential Motion Transformation 

The differential motion of a point, including translation and rotation in a coordinate 

system, A , is represented as follows: 

 

0

0

0

0 0 0 0

A A A

z y x

A A A

A z x y

A A A

y x z

d

d

d

 

 

 

 
 

  
 
 
                                                       (1) 

where the differential motion vectors 

t
A A A A

x y z     δ
 and 

t
A A A A

x y zd d d   d
 are 

the rotational and translational velocity, respectively, as 0 t  with respect to each axis 

of the coordinate system, A . 

 

 

Figure 1. Transformation of Differential Motion between Coordinate 
Systems 

Given two coordinate systems, B  and C , and the homogeneous coordinate 

transformation between them, 
C

BT , the differential motion, 
B  can be transformed into 

C  

shown in Figure 1 as follows: 
1C C B C

B BT T  
                                                      (2) 

The transformation, 
C

BT , can be represented by column vectors, n , o , a , and p  as in 

(3): 

 

0 0 0 1

0 0 0 1

x x x x

y y y yC

B

z z z z

n o a p

n o a p
T

n o a p

 
 
 
 
 
 

 
  
 

n o a p

                                                           (3) 

By inserting (3) into (2), the following matrix equation is obtained: 
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 

 

 

0

0

0

0 0 0 0

0

0

0

0 0 0 0

C C C

z y x

C C C

z x y

C C C

y x z

B B B B

B B B B

B B B B

d

d

d

 

 

 

 
 

 
 
 
  

      
 
      

  
      
 
  

δ a δ o n δ p d

δ a δ n o δ p d

δ o δ n a δ p d

                                    (4) 

In (4), “  ” and “” represent inner and outer products of two vectors, respectively. 

The corresponding terms between the left and right sides of (4) are arranged as follows: 

 

 

 

C B

x

C B

y

C B

z

C B B

x

C B B

y

C B B

z

d

d

d







 

 

 

   

   

   

δ n

δ o

δ a

n δ p d

o δ p d

a δ p d
                                                     (5) 

These represent the transformation of differential motion between coordinate systems 

[13]. 

 

3. Kinematic Model of Bicycle by Using Differential Motion 

Transformation 

According to the driving wheel, there are two types of bicycles: those driven by the 

front wheel and those driven by the rear wheel [9, 18]. Because the velocity vector has 

different interpretation at each coordinate frame, those bicycles have different velocity 

kinematics. In this section, the velocity kinematics is obtained for each type of bicycle by 

using the differential motion transformation in this section. The velocity kinematics 

implies the relationship between the angular speed of the driving wheel and the velocity 

of the bicycle’s reference position with respect to the world coordinates fixed on the 

ground. 

The structure of a standard bicycle and assignment of the coordinate system are shown 

in Figure 2. In the figure, F and R  represent the coordinate systems of the front and rear 

wheels at contact points with the ground. The world coordinate system is W  and the 

moving coordinate system, B , is set at the reference position of the bicycle, e.g., the 

rider’s position on the bicycle. The radius of each wheel and the angular speed of the 

driving wheel are denoted as r  and . In Figure 2 (b), the steering angle between xF
 and 

xR
 and the heading angle between xR

 and xW
 are represented as   and , respectively. 
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(a) Bicycle (Side View) (b) Assignment of Coordinates (Top View) 

Figure 2.  Coordinate System of Autonomous Bicycle 

 

3.1. Rear-wheel Driving 

In the case of rear-wheel driving, the actuation,  , of the rear wheel leads to the 

driving speed, 
R

xv r , along the xR  axis. The lateral speed of the rear wheel is
0R

yv 
. 

The transformation of differential motion between R  and F  is described as follows from 

(2): 
1F F R F

R RT T                                                            (6) 

where 
F  and 

R  denote the differential motions in F  and R . The transformation, 
F

RT
, is represented as 

( , ) ( , )

0

0 0

0 0 1 0

0 0 0 1

F

RT Trans x l Rot z

c s l

s c



 

 



 
 
 
 
 
                                                     (7) 

In (7), ( , )Rot   and ( , )Trans    denote the rotational and translational transformations, 

respectively; s and c  imply sin  and cos . 

According to (3) and (5) combined with (7), the differential motion in F  is described 

as follows: 
F R R

x x yc s   
                                                    (8-1) 

F R R

y x ys c    
                                                   (8-2) 

F R

z z                                                              (8-3) 
F R R R

x x z yd c d l s s d    
                                             (8-4) 

F R R R

y x z yd s d l c c d     
                                             (8-5) 

F R R

z z yd d l 
                                                        (8-6) 

Because the motion of the front wheel is composed of the rotational component about 

the z -axis and the translational component on the 
x y

 plane, only the equations (8-3), 
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(8-4) and (8-5) about
F

z , 
F

xd , and 
F

yd
 are considered. The lateral motion of the rear wheel 

in R  is 
0R

yd 
 and that of the front wheel in F  is also

0F

yd 
. Thus, (8-5) becomes 

1
tanR R

z xd
l

 
                                                            (9) 

Inserting (9) into (8-4) and (8-5) gives the following differential motion in F : 
1

tanF R

z xd
l

 
                                                       (10-1) 

1F R

x xd d
c



                                                          (10-2) 

The differential motion in (10) together with 
0F

yd 
 corresponds to the following 

velocity as 0t  : 
1

tanF R

z xv
l

 
                                                        (11-1) 

1F R

x xv v
c



                                                             (11-2) 

0F

yv 
                                                              (11-3) 

It is possible to transform the velocity in F  into those in W  by using rotational 

transformation about the z -axis as follows: 

( ) ( ) 0

( ) ( ) 0 0

0 0 1 tan

( )

( )

tan

R

x

F

x

F

y

F
Rz

W
x

v

v c s c

v s c

v
l

c

c

s
r

c

l

    

   

 

 



 






 
 

       
            
       

 
 

 
 
 

 
  

 
 
 
                                  (12) 

where    is the angle between xW  and xF , as shown in Figure 2 (b). Eq. (12) is the 

representation of the front wheel velocity inW . 

It is possible to obtain the velocity of the reference position, B , of the bicycle from 
F  

as follows: the differential motion, 
F , is transformed into 

B  by using (13): 
1B B F B

F FT T                                                                (13) 

where 
B

FT  is given as 

 

1

1

1

( , ) ( , ) ( , )

0

0

0 0 1

0 0 0 1

B

FT Rot z Trans x l Trans z h

c s l c

s c l s

h



  

  

  

 
 

 
 
 
                                      (14) 

As before, by using (3), (5), and (14), the translational velocity on the 
x y

 plane and 

the rotational velocity about the z -axis in B  are obtained as follows: 
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B R

x xv v                                                               (15-1) 

11 tanB R

y x

l
v v

l


 
  
                                                      (15-2) 

1
tanB R

z xv
l

 
                                                         (15-3) 

Representation of (15) in W  is obtained as (16): 

1

1

1

0

0 1 tan

0 0 1
tan

1 tan

1 tan

tan

R

xB

x

B R

y x

B

z
W

R

x

v
v c s

l
v s c v

l

v
l

l
c s

l

l
r s c

l

l

 

  




  

   



 
 

     
     

                
  

  
   
  

  
    

  
 
 
                                                 (16) 

 

3.2. Front-wheel Driving 

In the case of front-wheel driving, the driving speed of the front wheel is 
F

xv r  in F , 

as shown in Figure 2 (b). The lateral velocity of the front wheel is
0F

yv 
. The differential 

motion in F  can be transformed into R  as 
1R R F R

F FT T                                                              (17) 

where 
R

FT  is described as 

( , ) ( , )

0

0

0 0 1 0

0 0 0 1

R

FT Rot z Trans x l

c s lc

s c ls



  

  

  

 
 

 
 
 
                                                   (18) 

By using (5), the translational differential motion on the 
x y

 plane and the rotational 

differential motion about the z -axis in R  are obtained as follows: 
R F

z z                                                           (19-1) 
R F F

x x yd c d s d  
                                                    (19-2) 

R F F F

y x y zd s d c d l    
                                               (19-3) 

Because the lateral motions of two wheels are 
0R

yd 
 and 

0F

yd 
, (19-3) becomes 

1F F

z xs d
l

 
                                                               (20) 

By inserting (20) into (19-1) and (19-2) and representing the resultant equations as 
0t  , the following velocity kinematics in R  are obtained as 

1R F

z xs v
l

 
                                                              (21-1) 

R F

x xv c v
                                                                (21-2) 
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0R

yv 
                                                                   (21-3) 

To represent (21) into W , ( , )Rot z   is premultiplied as follows: 

0

0 0

0 0 1

R F

x x

R

y

R
Fz

W
x

v c s c v

v s c

s
v

l

c c

r s c

s

l

  

 

 

 

  



 
    
    

     
        
 

 
 
 

  
 
 
                                                (22) 

The differential motion in the reference position, B , of the bicycle can be obtained by 

the following transformation: 
1B B R B

R RT T                                                            (23) 

where 
B

RT  is given as 

1

1

( , ) ( , )

1 0 0

0 1 0 0

0 0 1

0 0 0 1

B

RT Trans x l l Trans z h

l l

h

 

 
 
 
 
 
                                          (24) 

As before, the translational velocity on the x y  plane and the rotational velocity about 

the z -axis in B  as 0t   are obtained by using (3), (5), and (24) as follows: 
1B F

z xs v
l

 
                                                         (25-1) 

B F

x xv c v                                                           (25-2) 

11B F

y x

l
v s v

l


 
  
                                                    (25-3) 

The equations of motion, (25), is represented in W  as follows: 

1

1

1

0

0 1

0 0 1

( )

( )

F

xB

x

B F

y x

B

z
W

F

x

c v
v c s

l
v s c s v

l

s
v

l

l
c s s

l

l
r s c s

l

s

l


 

  




   

    



 
 

     
     

                
  

 
  

 
 

  
 
 
 
                                               (26) 

To summarize from (16) and (26), the motion equations of the rider’s coordinate 

system, B , are described in W  as follows: 

In the case of rear-wheel driving at speed v r : 
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1

1

1 tan

1 tan

tan

B

x

B

y

B

z
W

l
c s

l
v

l
v r s c

l

l

  

   




  
   
   

    
     

   
   

 
                                                      (27) 

In the case of front-wheel driving at speed v r : 

1

1

( )

( )

B

x

B

y

B

z
W

l
c s s

lv
l

v r s c s
l

s

l

   

    




 
  

   
   

     
   
 

 
                                                         (28) 

In the preceding equations, the kinematic motion equation of the rear-wheel coordinate 

system is obtained by inserting l  into 1l , which matches the results established by Klein 

and Ham [1, 8]. It is asserted here that the kinematic models in (27) and (28) are more 

informative because they explain the velocity vector experienced at each coordinate 

frame. 

 

4. Computer Simulation 

In this section, computer simulations are conducted to verify the proposed kinematic 

model of a bicycle. An inverse kinematics is considered as a tracking controller to 

determine the speed of the driving wheel and the steering angle to follow a given desired 

trajectory. For brevity, only the case of driving by the rear wheel is considered in the 

simulation. The lengths of the bicycle are set as 1,500 mml   and 1 1,000 mml  . The 

desired trajectories of the circular and curved shapes in the world coordinate system for 

the rear wheel, 
( , , )R R R

d d d W
x y 

, are shown in Figure 3. The desired trajectories contain 

velocity information of 
( , , )R R R

xd yd zd W
v v 

 as

( ) ( 1)
( )

R R

d dR W W

xd W

x k x k
v k

t

 


 , 

( ) ( 1)
( )

R R

d dR W W

yd W

y k y k
v k

t

 


 , and 

( ) ( 1)
( )

R R

d dR W W

zd W

k k
k

t

 


 


  with small t  value. 

For each variable, k  is the time index and the subscript d  implies the desired value. 

 

  

(a) Circular Trajectory                                        (b) Curved Trajectory 

Figure 3.  Desired Trajectories for Rear Wheel 
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The velocity kinematics of the rear wheel can easily be obtained by substituting l  for 

1l ; i.e., 1l l  in (27), which gives 

tan

R

x

R

y

R

z
W

v c

v r s

l



 

 

 
  
  

   
  

   
                                                       (29) 

From (29), the driving speed, 
R

xv r , of the rear wheel and the steering angle,  , 

should be as follows to achieve the desired trajectory: 

   
2 2

R R R

x xd ydW W
v v v

r

 

                                                  (30-1) 

1tan

R

zd W

R

x

l

v


 

 
 
 
                                                        (30-2) 

Figure 4 shows the driving speed and the steering angle obtained by (30-1) and (30-2), 

respectively. For a circular trajectory, the driving velocity and steering angle are constant 

with time, which is easily understandable. 

The resultant trajectories of the front and rear wheels by the driving speed (30-1) and 

the steering angle (30-2) are given from (12) and (29) as shown in Figure 5. The trajectory 

of the rider’s position is almost indistinguishable from that of the rear wheel and is not 

presented in Figure 5. 

 

  

(a) Driving Speed 
R

xv r
                                     (b) Steering Angle   

Figure 4.  Driving Speed and Steering Angle 
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(a) Circular Trajectory                                   (b) Curved Trajectory 

Figure 5. Resultant Trajectories of Front and Rear Wheels 

 

5. Conclusion 

Kinematic modeling is essential for trajectory planning and the control of autonomous 

bicycles. The kinematic model helps to determine the driving speed of a wheel and the 

steering angle to follow a given desired trajectory. The conventional kinematic modeling 

method for bicycles depends on geometrical intuition, and it is difficult to apply various 

types of bicycles. In this study, a systematic method of kinematic modeling for bicycles is 

proposed based on the transformation of differential motion. Because the velocity vector 

has different interpretation at each coordinate frame, the differential motion 

transformation is useful to obtain the motion vector at each position of a bicycle; the 

front,  the rear wheels, and the rider’s position. 

To verify the velocity kinematic model, computer simulation was conducted for the 

inverse kinematic tracking control. The proposed method can be used as a unified 

approach to the kinematic modeling for various types of bicycles. 
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